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Background—SNPs located in the gene encoding the regulatory subunit of the protein

phosphatase 2B (PPP3R1, rs1868402) and the microtubule-associated protein tau (MAPT,

rs3785883) gene were recently associated with higher cerebrospinal fluid (CSF) tau levels in

samples from the Knight Alzheimer’s Disease Research Center at Washington University (WU)

and Alzheimer’s Disease Neuroimaging Initiative (ADNI). In these same samples these SNPs

were also associated with faster functional decline, or progression of Alzheimer’s disease (AD) as

measured by the Clinical Dementia Rating sum of boxes scores (CDR-sb). We attempted to

validate the latter association in an independent, population-based sample of incident AD cases

from the Cache County Dementia Progression Study (DPS).

Methods—All 92 AD cases from the DPS with a global CDR-sb ≤ 1 (mild) at initial clinical

assessment who were later assessed on CDR-sb data on at least two other time points were

genotyped at the 2 SNPs of interest (rs1868402 and rs3785883). We used linear mixed models to

estimate associations between these SNPs and CDR-sb trajectory. All analyses were performed

using Proc Mixed in SAS.

Results—While we observed no association between rs3785883 or rs1868402 alone and change

in CDR-sb (p>0.10), there was a significant association between a combined genotype model and

change in CDR-sb: carriers of the high-risk genotypes at both loci progressed more than 2.9 times

faster than non-carriers (p=0.015). When data from DPS were combined with previously

published data from WU and ADNI, change in CDR-sb was 30% faster for each copy of the high-

risk allele at rs3785883 (p=0.0082) and carriers of both high-risk genotypes at both loci

progressed six times faster (p<0.0001) than all others combined.

Conclusions—We replicate a previous report by Cruchaga et al that specific variations in

rs3785883 and rs1868402 are associated with accelerated progression of AD. Further

characterization of this association will provide a better understanding of how genetic factors

influence the rate of progression of Alzheimer’s disease and could provide novel insights into

preventative and therapeutic strategies.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease, affecting over 5

million individuals in the USA alone [1]. While the ε4 allele of apolipoprotein E (APOE)

has been identified as the most robust susceptibility variant in the late-onset form of AD,

data from recent genome-wide association studies (GWAS) have been successful in

identifying additional genetic factors that influence AD risk [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13]. Little is known, however, about genetic factors that influence the rate of progression

after the onset of dementia due to AD. Recently, several single-nucleotide polymorphisms

(SNPs), located in the genes encoding the regulatory subunit of the protein phosphatase 2B

(PPP3R1, rs1868402), and the microtubule-associated protein tau (MAPT, rs3785883)

genes, were associated with increased cerebrospinal fluid tau levels and increased rate of

functional decline, or progression of AD as measured by the Clinical Dementia Rating sum
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of boxes (CDR-sb) [14, 15]. In this study we attempted to replicate these associations by

genotyping these two SNPs in an independent sample of 92 AD cases from the Cache

County Dementia Progression Study (DPS) and examining their association with the rate of

functional decline or “progression” as measured by the CDR-sb. We then pooled our data

with data from the original report on these markers and performed a combined analysis to

evaluate the association in the combined sample.

Materials and Methods

Participants

The Cache County Study on Memory, Health, and Aging (CCSMHA) is a population-based

epidemiological study of dementia examining both genetic and environmental risk factors,

and their interactions. All individuals aged 65 and older and living in Cache County Utah

were targeted for enrollment. Beginning in 1995, four triennial waves of dementia

ascertainment were completed, with 5,092 (90% of eligible) individuals aged 65 and older

participating in a baseline interview. The study employed a multi-stage dementia

ascertainment protocol described elsewhere [16]. Briefly, screening began with the Modified

Mini-Mental State examination (3MS; [17]) or Informant Questionnaire for Cognitive

Decline in the Elderly [18]. “Screened positive” individuals completed an in-depth clinical

assessment, including a brief physical evaluation, a detailed history of medical and cognitive

symptoms, a structured neurological examination, and a one-hour battery of

neuropsychological tests. After psychiatrist examination and neuroimaging in persons with

working diagnoses of dementia, an expert panel reviewed all available data and assigned

final consensus diagnoses, with AD diagnoses following the National Institute of

Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and

Related Disorders Association criteria [19]. A total of 359 prevalent and 583 incident cases

of dementia were identified (including 209 prevalent and 335 incident cases of AD).

Informed consent was obtained for each interview. Institutional Review Boards at Utah State

University, Duke University, and Johns Hopkins University Study approved all study

procedures.

All incident AD cases that survived to the commencement of the Cache County Dementia

Progression Study (DPS) in 2002 were invited to participate with ongoing enrollment and

annual follow-up after dementia onset [20]. Rate of AD progression was based on functional

ability as measured by the Clinical Dementia Rating Scale-sum of boxes (CDR-sb).

Significant variability in the rate of progression has been previously reported in these

individuals, with approximately one third to one half progressing slowly in their disease

course, as defined by a one point (or less) per year change in function (CDR-sb) [20]. As in

Cruchaga et al., participants were selected to have a global Clinical Dementia Rating (CDR)

<1 at their initial clinical assessment to maximize the amount of progression information and

to minimize possible floor/ceiling effects from individuals who began the study with

advanced levels of dementia. They were also selected to have stored DNA samples and

CDR-sb data for at least two later time points. Ninety-two participants with incident AD

from the DPS met these criteria. Individuals in this cohort were assessed annually at
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regularly scheduled intervals [20]. Demographic information on this cohort can be found in

table 1.

Data from the WU and ADNI samples used in our initial study suggesting that variants in

PPP3R1 and MAPT are associated with the rate of progression were used for a larger

combined analysis. Samples from WU were enrolled in longitudinal studies at the Knight

Alzheimer’s Disease Research Center. Demographics of this sample are in table 1 and

sample collection and ascertainment has been described previously [21]. The ADNI samples

are part of a longitudinal study designed to measure the progression of mild cognitive

impairment (MCI) and early AD. Like the DPS samples, both the WU and ADNI samples

have been assessed using CDR and CDR-sb data for each sample have been used in this

manuscript. Demographics can be found in table 1 and sample collection and ascertainment

has been described previously [22, 23]. For up-to-date information, see www.adni-info.org.

Genotyping

For the WU series genotyping of rs1868402 and rs3785883 was conducted on DNA from

blood samples using an Illumina Golden Gate custom genotyping chip [15]. Genotypes were

called using BeadStudio. The DNA from the ADNI samples was obtained from cell lines at

the National Cell Repository for Alzheimer’s Disease and was also genotyped previously,

using Taqman® Assays [15]. For the DPS samples DNA from buccal cells was genotyped

rs1868402 and rs3785883 and used the same Taqman® Assays as were used for the ADNI

samples, which are available to be ordered from Life Technologies (rs1868402 assay id

C__12044272_10, rs3785883 assay id C__27500834_10). Genotype calls from Taqman®

Assays were made using Genotyper using all the genetic data from the DPS study. DNA

from the DPS samples was genotyped in duplicate and concordance rates were 100%.

Genotyping rates in all samples attempted were 98.6%. Genotype frequencies for these

SNPs did not deviate significantly from the expectations of Hardy-Weinberg equilibrium

(evaluated using a chi-squared test to compare the observed vs. the expected genotype

frequencies).

Analysis

We first conducted analyses in the DPS samples alone, then in the combined DPS, WU and

ADNI samples. Our analyses were limited a priori to three tests; the two single SNPs and

the specific combined genetic model that we identified in our previous report [15].

Specifically, we used linear mixed models to estimate associations between specific SNPs

and CDR-sb trajectory to test the dominant model for rs1868402, the additive model for

rs3785883 and the exact combined genotype model specified in Cruchaga et al, 2010 [15].

In all analyses, initial age and initial CDR were included as covariates. APOE ε4 genotype

and gender were not included as covariates as they were not associated with rate of

progression. All samples reported European-American ancestry. Analyses of these samples

using array data from WU, ADNI and DPS indicate no evidence of population substructure.

The DPS is population-based sample and there is a limited amount of relatedness among

individuals. We corrected for possible family-based effects in the DPS sample by adding

random effect for family to the model. The p-values with and without inclusion of this

variable, APOE genotype, or gender were affected minimally. The combined DPS, WU and
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ADNI analysis included site in addition to initial CDR and initial age as a variable in the

model. For further characterization of significant association we performed analyses of the

highest risk genotype combination against the reference group of all other individuals and

tested an rs1868402*rs3785883 interaction term. All analyses were performed using Proc

Mixed in the SAS software package (SAS Institute Inc., Cary, NC, USA).

Results

DPS participants had a mean initial age of 84.5 years, 45% were male, and 47% were APOE

ε4 carriers. Mean number of assessments was 4, and mean time from first to final

assessment was 3.2 years. The ADNI sample has significantly shorter follow-up time than

the other samples (p<0.05) and the DPS sample is significantly older (p<0.0001). The minor

allele frequency of rs1868402 in the DPS participants (0.28) was similar to that observed in

the pooled WU and ADNI cohorts (0.27) and in the 1,000 Genomes Project (0.25). The

same was true for the minor allele frequency of rs3785883: 0.19 in DPS, 0.17 in the WU and

ADNI data (0.17) and 0.17 in the 1000 Genomes Project. Genotype frequencies for both

rs1868402 and rs3785883 (table 1) were not significantly different from each other (p=0.28,

0.21, respectively) and did not deviate from the expectations of Hardy-Weinberg

equilibrium (p>0.05). The average rate of functional decline in the DPS cohort DPS was

1.35 CDR-sb per year (sbpy). A summary of the associations observed in the DPS alone,

combined WU and ADNI samples (reported previously) and the DPS, WU, ADNI combined

series are in table 2. In the DPS samples there was not a significant association between

rs1868402 (dominant model; p=0.55) or rs3785883 (additive model; p=0.075) and increased

rate of change in CDR-sb. For rs3785883 increased rate of progression with each copy of

the “A” allele observed was consistent with findings of Cruchaga et al (2010). In the DPS

samples alone, the combined genotype model was significantly associated with change in

CDR-sb: carriers of the risk genotype at both loci progressed more than 2.9 times faster than

all other individuals (p=0.029, 3.61 sbpy). Analyses using APOE genotype, gender, and

“family” as covariates did not significantly change our results.

When the DPS cohort was combined with those from the WU and ADNI series [15] the

average rate of change was 0.42 sbpy. In this combined sample there was no association

between rs1868402 and rate of progression (p=0.24). However, there was a significant

association between rs3785883 and progression: participants progressed 30% faster on

average for each copy of the risk allele compared to those lacking the risk allele (p=0.008;

no risk alleles 0.37 sbpy, 1 risk allele 0.49 sbpy, 2 risk alleles 0.61 sbpy; table 3). Carriers of

risk genotypes at both loci progressed six times faster on CDR-sb than carriers of all other

genotypes combined (2.37 sbpy for risk genotypes, 0.39 sbpy for all others; p<0.0001; table

3). In addition, non-carriers of either risk genotype showed a 20% slower rate of progression

compared to all other individuals that neared statistical significance (p=0.084; 0.37 sbpy for

non-carriers, 0.46 sbpy for all others; table 3). Analysis using an rs1868402*rs3785883

interaction term also yielded a significant interaction (p=0.049). Analyses using APOE

genotype and/or gender as a covariate did not significantly change our results.
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Discussion

Specific genetic variants in PPP3R1 and MAPT may modulate levels of tau and ptau in the

presence of amyloid deposition, thus altering the rate of functional decline in individuals

with AD [14, 15]. The results reported here provide additional evidence from an

independent sample that AD cases who carry the “C” allele of rs1868402 (PPP3R1) and are

homozygous for the “A” allele at rs3785883 (MAPT) have a significantly faster functional

decline.

The DPS sample was older at initial assessment than the WU and ADNI samples

(p<0.0001). Small sample size and greater initial age may have limited the statistical power

of the analyses in the DPS sample alone and may explain the failure to detect significant

associations in single SNP tests (power=0.29). Despite this, the findings for the additive

model of rs3785883 were suggestive of association. The direction of the effect observed in

DPS alone for both single SNP tests was consistent with the results reported by Cruchaga et

al. In addition, results from DPS alone suggested that individuals carrying high-risk

genotypes at both markers progressed 2.9 times faster than individuals with other genotypes.

Combined analyses of the three datasets provided greater power (0.96) and evidence of

greater acceleration of decline for carriers of high-risk alleles at both rs1868402 and

rs3785883 resulting in a six times faster rate of progression of Alzheimer’s disease as

measured by the CDR-sb. This appears to be more than a simple additive effect, such that

these genes interact to produce the observed phenotypic effect (p=0.0498). We also note that

in combined analysis, carriers of the non-risk genotypes at both loci (GG for rs1868402 and

TT for rs3785883) progressed 20% slower than all other individuals (figure 1).

Our data are consistent with other recent work indicating that these markers play an

important role in the rate of dementia progression in individuals diagnosed with AD. The

original report provides evidence that the mechanism of this effect is altered levels of tau in

the brain. Other work also supports role for ptau levels in AD progression. For example,

CSF ptau levels have been shown to increase over time in impaired patients [24]. More

recently, Liu et al (2012) showed trans-synaptic spread of tau pathology in mouse models,

providing direct evidence that tau is an important aspect of early AD pathology and

progression. In addition to tau and AD pathology, significant efforts to identify factors that

modulate AD progression are also ongoing. Recently, associations between the CSF VILIP

levels [25] and CSF CCL2 levels and AD progression have been reported [26]. While this

study was limited to European Americans, further study of AD progression in larger datasets

from multiple ethnic groups will provide better understanding of the pathological and

genetic basis for both faster and slower progression, thus elucidating novel therapeutic

targets for Alzheimer’s disease.
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Figure 1.
Rate of progression over a five-year time period genotype groups in the combined WU, ADNI, DPS sample. (A) rs1868402

(dominant model) (B) rs3785883 (additive model), and (C) combined genotypes (carriers of both risk genotypes are compared

to all other genotype combinations). Error bars represent the standard error in change in CDR-sb over time.
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Table 1

Sample Characteristics: sample size (N), age at first study assessment (initial age), percentage of males

(%Males), percentage of APOE ε4 carriers (%ε4 Positive), mean and standard deviation for the number of

assessments (# Assessments), the mean and standard deviation of the Follow-up time and genotype

frequencies (%) for rs1868402 and rs3785883 for the Cache County Dementia Progression Study (DPS),

Alzheimer's Disease Neuroimaging Initiative (ADNI) and Washington University (WU) series.

DPS ADNI WU

N 92 459 109

Initial Age 84.5(5.3) 75(6) 68(11)

%Male 45 39 56

% ε4 Positive 47 47 40

# Assessments 4.0(2.4) 4.1(1.6) 3.8(2.0)

Follow-up time 3.2(2.1) 1.9(1.1) 3.2(2.1)

rs1868402 (CC/CT/TT) 5/46/49 7/40/53 10/44/46

rs3785883 (AA/AG/GG) 5/27/58 3/30/67 2/25/73

Alzheimers Dement. Author manuscript; available in PMC 2015 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Peterson et al. Page 11

T
ab

le
 2

P-
va

lu
e,

 r
is

k 
ge

no
ty

pe
 a

nd
 c

ha
ng

e 
in

 C
D

R
-s

b 
pe

r 
ye

ar
 f

or
 th

e 
do

m
in

an
t m

od
el

 o
f 

rs
18

68
40

2,
 th

e 
ad

di
tiv

e 
m

od
el

 o
f 

rs
37

85
88

3 
an

d 
th

e 
co

m
bi

ne
d 

ge
no

ty
pe

m
od

el
 f

or
 r

s1
86

84
02

/r
s3

78
58

83
. V

al
ue

s 
ar

e 
lis

te
d 

fo
r 

th
e 

D
em

en
tia

 P
ro

gr
es

si
on

 S
tu

dy
 (

D
PS

) 
al

on
e,

 th
e 

W
as

hi
ng

to
n 

U
ni

ve
rs

ity
 (

W
U

) 
an

d 
A

lz
he

im
er

's

D
is

ea
se

 N
eu

ro
im

ag
in

g 
In

iti
at

iv
e 

(A
D

N
I)

 s
am

pl
es

 c
om

bi
ne

d 
an

d 
th

e 
co

m
bi

ne
d 

D
PS

, W
U

 a
nd

 A
D

N
I 

sa
m

pl
es

.

rs
18

68
40

2
rs

37
85

88
3

C
om

bi
ne

d 
M

od
el

ri
sk

ge
no

/s
bp

y
p-

va
lu

e
ri

sk
 g

en
o/

sb
py

p-
va

lu
e

ri
sk

 g
en

o/
sb

py
p-

va
lu

e

D
PS

C
C

+
C

T
/1

.3
8

0.
55

A
A

/1
.9

1
0.

07
5

C
C

+
C

T
, A

A
/3

.6
1

0.
02

9

* W
U

/A
D

N
I

C
C

+
C

T
/0

.2
9

0.
00

26
A

A
/0

.3
4

0.
05

7
C

C
+

C
T

, A
A

/1
.0

2
<

0.
00

01

D
PS

/W
U

/A
D

N
I

C
C

+
C

T
/0

.4
3

0.
24

A
A

/0
.6

1
0.

00
8

C
C

+
C

T
, A

A
/2

.3
9

<
0.

00
01

* W
U

/A
D

N
I 

re
su

lts
 w

er
e 

pr
ev

io
us

ly
 r

ep
or

te
d 

by
 C

ru
ch

ag
a 

et
 a

l (
20

10
).

Alzheimers Dement. Author manuscript; available in PMC 2015 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Peterson et al. Page 12

Table 3

Change in CDR-sb per year for select genotypes compared to all other genotypes in the combined WU, ADNI

and DPS samples.

Risk genotype All others P-value

rs1868402 0.43 0.37 0.243

rs3785883 0.61 **0.37 ***0.008

Combined Model 2.37 0.39 <0.0001

Combined Model *0.37 0.46 0.084

*
Value is for the non-risk genotype carriers.

**
Value for the non-risk genotype from the additive model.

***
P-value from the additive model.
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